Dan Johnson David G. Elmes Term Professor of Cognitive and Behavioral Science

Dan Johnson

Parmly Hall 220
540-458-8629
johnsondr@wlu.edu
Curriculum Vitae

Research

The Computational Cognition and Creativity Lab uses computational models and empirical data to investigate the mechanisms underlying creativity processes like the generation and selection of novel ideas. We employ diverse methodologies like latent semantic analysis and subjective response coding using inter-rater reliability metrics. We use the statistical and graphics platform, R, for modeling and data work. Other topics we explore include metacognition and the role of reading narrative fiction in the development of empathy, theory of mind, and inferential abilities.

Teaching

  • CBSC 112: Cognition
  • CBSC 114: Social Psychology
  • CBSC 118: Psychology Mythbusters
  • CBSC 240: Introduction to Data Science: Mind Analytics
  • CBSC 250: Statistics and Research Design
  • CBSC 259: Cognition and Emotion
  • CBSC 359: Advanced Methods in Computational Cognition

Selected Publications

Johnson, D. R., **Cuthbert, A. S., & **Tynan, M. E. (in press). The neglect of idea diversity in idea generation and evaluation. Psychology of Aesthetics, Creativity, and the Arts.

**Heinen, D. J., & Johnson, D. R. (2018). Semantic distance: An automated measure of creativity that is novel and appropriate. Psychology of Aesthetics, Creativity, and the Arts, 12, 144-156.

Johnson, D. R., **Tynan, M. E., **Cuthbert, A. S., & **Q’Quinn, J. K. (2018). Metacognition in argument generation: The misperceived relationship between emotional investment and argument quality. Cognition and Emotion, 32, 566-578.

Gavaler, C., & Johnson, D. R. (2017). The genre effect: A science fiction (vs. realism) manipulation decreases inference effort, reading comprehension, and perception of literary merit. Scientific Study of Literature, 7, 79-108.

Data Science Links

Want to learn how to program and do data science in R?  Check out datacamp.

https://www.datacamp.com/

 

Want to learn Bayesian statistics?  Check out John Kruschke's and Eric-Jan Wagenmaker's work.

http://doingbayesiandataanalysis.blogspot.com/

http://www.ejwagenmakers.com/papers.html